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Abstract

Cost engineers of buying enterprises perform detailed product cost calculations of
externally manufactured components. The aim of these calculations is to determine
what a product should cost and to support purchasing functions in fact-based
negotiations. While product cost engineers have deep knowledge in the calculation of
direct cost, they need support in the calculation of supplier’s indirect cost categories.
The calculation of industrial rent, which is expressed in annual cost per m? of
occupied plant building floor space can be improved by providing accurate
construction cost estimates. Construction costs are strongly impacting the calculation
of supplier’s annual building depreciation, which is a crucial cost driver for the
determination of the industrial rent. Academic literature is actually not providing an
accurate and suitable cost model for product cost engineers, which is estimating
construction cost per m? depending on different industrial building categories and
alternative supplier plant locations. The paper aims to close this gap by applying
linear regression analysis on a set of European construction cost data considering two
industrial building categories: “warehouses/basic factory units” and “high-tech
factories”. By regressing construction cost against construction labor rates within
different supplier plant locations it was possible to form suitable and accurate
parametric regression functions with R? values between 0.74 and 0.88. Next to high
R? values acceptable mean average percentage errors between 7.45% and 11.77%
could be realized by comparing estimated with observed construction cost.

The estimation of industrial construction costs based on the paper’s results can be
used to improve the calculation of industrial rent, which is one cost element, that has
to be covered within product cost engineer’s Should Cost Calculations.
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1. Introduction

In highly competitive markets such as the automotive industry product cost calculations
have become a practical standard in target cost setting for externally purchased and
manufactured components (Hiilsbomer, 2015; Méller, 2020, 105-106; Méller, 2020, 118).
These Should Cost Calculations are contributing to higher profitability through increased
bargaining power in fact-based negotiations due to improved knowledge of supplier’s
product cost structures (Ask/Laseter, 1998; Parsa, 2019, 61-63). Although they are
directly affecting company’s profitability only few authors describe the process and the
information needed in order to carry out these calculations. Roy et al. (2011) present a
rich description of data and information requirements needed in order to perform Should
Cost Calculations within the automotive industry. They cluster this information within
different cost categories, so that cost engineers are able to build their product cost
calculations on a solid basis. Regarding the calculation of supplier’s plant building costs,
which are to be covered within machine hourly rates or overhead ratios Roy et al. (2011)
give only few insights since they are focussing stronger on cost elements and information
that contribute to direct manufacturing costs. Referring to costs of manufacturing
buildings they name annual depreciation costs, maintenance and other cost elements
while they state these costs are to be allocated within the machine hourly rates according
the floor space occupied by different machine cost centres. (Roy et al,, 2011, 7). In this
context it is common cost engineering practice to aggregate all annual cost related to the
plant building within a cost factor, which is also known under the term industrial rent,
that is expressed in currency units per m? (Rossi, 2021). Next to the manufacturing
building Roy et al. (2011) are indirectly referring to cost of other plant building categories
such as warehouses for incoming goods, that have to be covered within material
overheads (Roy et al., 2011, 6). Construction cost is one crucial parameter, which needs
to be taken in consideration, in order to provide sound estimates for fully accounted
industrial rents of supplier’s manufacturing facilities (Rossi, 2021).

In this context following research question is raised:

“How can product cost engineers provide accurate construction cost estimates of supplier’s
plant buildings”?

This paper aims to answer this question by providing a parametric cost model which is
based on regression analysis. The model enables cost engineers to provide fast and
accurate estimates of construction costs per m? for different plant building categories,
while country specific requirements can be taken in consideration.

Generally, cost estimation methods can be classified in qualitative and quantitative
approaches (Cavallieri et al., 2004; Niazi et al., 2006). Qualitative methods select a cost
optimal solution among alternative designs, rather than to predict a precise absolute
quantitative value. (Layer et al., 2002, 502; Layer, 2003, 16; Salmi et al., 2016, 249).
According Niazi et al. (2006) quantitative cost estimation can be grouped in two major
subcategories: analytic and parametric cost estimation. Analytical approaches decompose
the to be estimated object into the basic elements and/or manufacturing operations and
are based on a bill of materials/bill of processes. They attempt to consider all resource
spending for material, labor and overheads that are finally aggregated to total cost. Due
to their transparent decomposition of cost analytic cost estimation methods are
considered to provide the most accurate results. Their downside is, that they require
intensive cost knowledge and huge time efforts in order to carry out the calculations.
Consequently, these approaches fail in situations, in which cost engineers cannot rely on
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deep cost knowledge or in case that the to be estimated object is not well defined
(Cavalieri et al.,, 2004, 168; Ganorkar et al.,, 2017, 317-319; Niazi et al.,, 2006, 568);
Farineau et al,, (2001), 80).

Parametric cost estimation techniques instead utilize statistical methods in order to
create cost estimation functions based on a limited set of product describing technical or
physical variables, which are supposed to be the crucial cost drivers (Layer et al., 2002;
Cavalieri et al., 2004; Duverlie/Castelain, 1999, 896). Hence, they can be applied even in
situations, where the design of the to be estimated object can be only described in a
rudimental manner (Cavallieri, 2004, 168). In this context parametric approaches might
be also a suitable cost estimation technique for indirect cost categories, in which cost
engineers might not have detailed knowledge or in case that a detailed analytic calculation
doesn’t stand in relation to the required time efforts.

Regression analysis is a frequently applied method that is used in construction cost
estimation. Kim et al. (2004) for instance investigated the performance of cost estimation
based on multiple regression analysis compared to cost estimation based on case-based
reasoning and artificial neural networks. They included within their analysis a dataset of
530 construction cost records focussing on residential buildings. Within their comparison
of different cost estimation techniques multiple regression analysis achieved an
acceptable accuracy of a mean absolute estimation error of 6,95% compared to 2,97%,
that has been achieved through neural networks or 4,81% by utilizing case-based
reasoning. Even though multiple regression analysis was resulting in less accurate results
compared to other cost estimation methods, the authors point out advantages such as
time effectiveness to carry out the calculations and the transparent explanation of cost
drivers.

Lowe et. al (2006) applied linear regression analysis on a dataset of 286 buildings in the
United Kingdom and generated six cost estimation functions. 41 potential independent
variables based on technical building parameters and to be fulfilled requirements were
taken in consideration for model forming. Five independent variables were commonly
used within all developed regression equations and the minimum of independent
variables was 8. The achieved R? value was within the range of 0.661 to 0.668, while
calculated mean absolute percentage errors ranged from 19,3 to 21,7%.

Sommez (2008) presents a cost estimation approach for building costs, which combines
parametric cost estimation based on multiple regression analysis with probabilistic cost
estimation. His study is based on 20 US-building projects, while 20 different parameters
have been selected. His model was able to conduct calculations, that can be applied within
the conceptual phase of building constructions. The average imputed error was deviating
only 12 percent compared to detailed cost estimations.

Kim and Hong (2012) demonstrated a cost model, which combined a revised case-based
reasoning technique with regression analysis. Their mixed cost modelling approach was
enabling construction cost estimations for railroad bridges within the early planning
phase. The model is verified based on five case studies and was able to reduce the error
of cost estimation by 16.2% compared to previous applied cost model.

By reviewing the academic literature, it can be summarized, that regression analysis is a
frequently applied method within in the field of construction cost estimation but was not
focussing on the prediction of construction costs of industrial plant buildings based on
limited information. Available models are not tailored to the needs of product cost
engineers, who need assistance in determining supplier’s industrial rents, that are to be
included in their Should Cost Calculations. This paper closes this gap and provides
accurate and effective parametric cost estimation functions of construction cost per m?
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for multiple plant building categories and alternative plant locations based on regression
analysis.

2. Materials and Methods

Within the section 2.1 “Materials” the underlying dataset will be described in detail on
which the regression analysis will be based on. Section 2.2 "Methods” instead, will focus
on the methodological approach of this paper. Next to a brief description of regression
analysis and to be fulfilled requirements it includes an explanation of the validation
technique as well that will be used, in order to rate the accuracy of the generated cost
estimation functions. The creation of the cost estimation functions will be finally
presented in chapter 3 “Results”, before the paper will end with the chapters 4:
“Discussion” and 5 “Conclusions”.

2.1. Materials

The dataset which will be used, in order to apply linear regression analysis, is based on a
global construction cost survey, which was conducted by Turner and Townsend in 2019.
This study provides construction cost data of real estate projects and covers 27
commercial and industrial building categories for 64 country records. 20 out of these 64
records are related to Europe. Each record is referring to country specific data related to
construction cost, construction-labor-rates and standard construction materials. The
underlying cost data was collected within the last quarter of 2018, while building costs
were referring to average values of construction cost based on typical regional standards
of building construction (Turner and Townsend, 2019, 114). This paper will focus on the
European dataset, in order to create cost estimation functions for construction cost of
different categories of supplier plant buildings. In this context two types of industrial
buildings will be taken in consideration. The first category,warehouses/basic factory
units” covers industrial buildings with two possible utilitzations: Warehousing or the
implementation of basic manufacturing and assembly operations, that require only a low
level of automatization. The second building category ,high tech factories” covers
manufacturing buildings, that need a higher level of automatization. Since innovative and
modern production technologies, which are exemplarily known under terms like industry
4.0, have not been implemented so far in larger scales (Krzywdzinski, 2017, 248), it can
be concluded, that the term ,high tech factory” is referring to manufacturing buildings,
that are suitable to enable the implementation of highly automatized conventional
production lines such as CNC production-, press-, or welding-lines (Krzywdzinski, 2017,
253-254).

Next to the explanation of to be covered building categories it is important to highlight all
costs, which are covered within the term construction costs. The term construction costs
refers to direct construction costs. Direct construction costs cover all costs related to
plumbing, heating, ventilation, air conditioning, fire protection and all systems referring
to electricity, communication and transportation. Furthermore it includes costs for the
substructure, columns, upper floors, staircases, roof, internal and external walls and
doors, finishes, ceiling, and fitments (Turner and Townsend, 2019, 114). Next to the cost
items mentioned above contractor’s profit margins and cost related to preliminaries are
also included (Turner and Townsend, 2019, 20). Conversely developer’s internal cost,
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local authority fees, headwork charges, cost of land and costs referring to legal and
financial aspects are excluded. Same counts for external works, landscaping, professional
fees, demolition, loose furniture, fittings, equipment, sales taxes, test bores, site
investigations, removal of significant ground constructions, abnormal footings and cost
for onsite or underground parking (Turner and Townsend, 2019, 114).

All cost data within this paper is expressed in EUR, while currency exchange rates from
the study of Turner and Townsend (2019) were taken in consideration (Turner and
Townsend, 2019,114). The conversion of all values in one base currency was needed in
order to apply regression analysis and to enable a comparison of calculated results.

The following three tables summarize the data used for each building category within the
European dataset. The model forming data points were coded with the letters “MF” and
an ascending number (MF 1, MF 2, ...). Data points which were not used to form the cost
estimation functions were coded by “OUT” within the same logic (OUT 1, OUT 2, ...). Each
data table refers to one of the previously mentioned building categories and includes cost
data of construction costs per m? representing the dependent variable and one
independent variable, which is referring to country-region specific construction labor
rates. The reason why some data points were excluded from regression analysis and why
only one single independent variable was considered for model forming will be pointed
out in detail within the result section of this paper. For the category “warehouses/basic
factory units” the total European dataset was spitted within two subsets “United
Kingdom and Ireland” and “Continental Europe”. The explanation for this split will be
also given within the result section of this paper.

Table 1: Dataset United Kingdom and Ireland - Warehouses/ basic factory units

# Country Region y Xq
Construction General
cost construction
Warehouses/ labor rate

basic factory [Eur/hour]
units

[Eur/m?]
MF 1 Ireland Dublin 1025 27
MF 2 UK London 1029 26,84
MF 3 UK Scotland 802 24,61
MF 4 UK North 829 23,49
MF 5 UK Central 847 25,72
MF 6 UK South 384 24,61

OUT 1 UK Northern 783 17,89
Ireland
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Table 2: Dataset Continental Europe - Warehouses/ basic factory units basic

# Country Region y Xq
Construction General
cost construction
Warehouses/ labor rate
basic factory [Eur/hour]
units
[Eur/m?]
MF 1 Austria Vienna 687 32
MF 2 France Paris 751 26
MF 3 Germany Berlin 645 30
MF 4 Germany Frankfurt 660 31
MF 5 Germany Munich 713 33
MF 6 Netherlands Amsterdam 820 35
MF 7 Poland Warsaw 442,37 8,34
MF 8 Russia Moscow 446.,9 9,86
MF 9 Spain Barcelona 492 19
MF 10 Spain Madrid 484 19
MF 11 Sweden Stockholm 871,44 36,7
MF 12 Turkey Istanbul 283,04 4,47
OUT 1 Switzerland Ziirich 1270,57 84,11
Table 3: Dataset complete Europe- high tech factories
# Country Region y X4
Construction General
cost construction
Warehouses/ labor rate
factory units [Eur/hour]
basic
[Eur/m?]
MF 1 Austria Vienna 687 32
MF 2 France Paris 751 26
MF 3 Germany Berlin 645 30
MF 4 Germany Frankfurt 660 31
MF 5 Germany Munich 713 33
MF 6 Ireland Dublin 1025 27
MF 7 Netherlands Amsterdam 820 35
MF 8 Poland Warsaw 442,37 8,34
MF 9 Russia Moscow 446.,9 9,86
MF 10 Spain Barcelona 492 19
MF 11 Spain Madrid 484 19
MF 12 Turkey Istanbul 283,04 4,47
MF 13 UK London 1028,95 36,84
MF 14 UK Northern 782,89 17,89
Ireland
MF 15 UK Scotland 801,91 24,61
MF 16 UK North 828,75 23,49
MF 17 UK Central 846,64 25,72
MF 18 UK South 883,55 24,61
OUT 1 Switzerland Ziirich 1270,57 84,11
OUT 2 Sweden Stockholm 871,44 36,7

100
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2.2. Methods

To generate cost estimation functions that are suitable to predict European construction
cost of different plant building categories within a certain spread range the method of
linear regression analysis was utilized. This method is based on the statistical correlation
of an available dataset, which includes values for a single dependent and at least one
independent variable. The approach is based on the condition of minimizing the sum of
squares of deviations between existing data (observed values) and calculated values (fitted
values) within a regression function. (Frost, 2019). In case of cost estimation, the
independent variables refer typically to technical characteristics, while the depending
variable is representing the cost of the to be estimated object (Pahl et al., 2007, 722-723;
Ehrlenspiel et al,, 2005, 458-459).

Linear regression models can be analytically expressed by equation no. 1 (Daniels/Minot,
2020, 196):

9= a+b1x1+ b2x2+...+bnxn (1)

with:

ieN;i=1-n;

¥: fitted or predicted value of the independent variable

x; independent variable I

a, b;: estimated constant a and coefficients b;: of the independent variables

In this context ¥ denotes to the predicted or fitted value of the independent variable of
the to be estimated object, x; to the independent variables, which are rated with the
estimated coefficients b;, while a is referring to an estimated constant (Daniels/Minot,
2020, 196).

Next to the R%-value and the p-values for the independent variables x; the constant and
coefficients (a, b;) are the key outputs regression analysis (Frost, 2019, 34). The R%-value
is indicating the variability in percentage of estimated costs, which can be explained based
on the independent variables x;, while the p-values are indicating whether the
correlation between independent variables x; and dependent variable y are statistically
significant (Frost, 2019, 29-31). A correlation coefficient R?=1 represents a perfect fit or
correlation between actual and estimated values. R?-value close to 1 are indicators of a
good correlation and a good performance of the cost estimation functions (Algahtani and
Whyte, 2016, 35). The p-values for the constant a and the coefficients b; indicate the

probability to identify values equalling to a and b; only by chance, with the probabilities
p; in case of non-existing statistical relationships between y and x; (Daniels/Minot, 2020,
200-201). Within this paper a confidence interval of 95% was taken in consideration,
which means that the maximum acceptable level of all p-values was set to 0.05. The cost
values of the previously explained dataset and variables were transformed into EUR,
while Microsoft Excel and the add in “Xrealstat” were used, in order to perform
regression analysis. As the result section will highlight, the construction labor rate was
fully suited to form significant and accurate regression functions, so that there was no
need to consider other independent variables. In this regard it is important to mention,
that the construction labor rates were fully fringed, which means, that they cover total
cost from employers’ perspective. Hence, they include next to the salary additional
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contributions for pensions, health insurance and other benefits (Turner and Townsend,
2019, 18).

After having identified appropriate linear regression functions for all to be covered
building categeories a final validation was performed, in order to determine the achieved
cost accuracies. This cross validation was needed, since high R? values indicating a good
model fit and low p-values representing low probabilities, that model forming
parameters (a, b;) were determined just by chance, are not a guarantee for accurate
predictions (Sommez, 2008, 1012). One method which can be utilized for validation
purposes is the ,leave one out” technique. By employing this technique a single datapoint
is removed from the model forming dataset, while the remaining ones are used to form a
regression function, which is used within a next step to estimate the value of the removed
record. By repeating that procedure for all data points the mean absolute percentage
error (MAPE) can be derived according to equation no. 2. This value is indicating the
average deviation of predicted compared to observed values (Sommez, 2008, 1014).

MAPE = Y;abs (=) /n (2)

Co

with:

c, :estimated value of construction cost per m?
¢, :observed value of construction cost per m?
n: no of records within the model forming dataset

In context of the to be achieved accuracy of the cost estimation functions MAPE-values at
a level of +/—15 % were set as a maximum to be accepted deviation. The decision for
accepting deviations up to 15% is based on the fact, that occupied manufacturing floor
space is typically not the most important cost driver among multiple parameters, that
need to be considered in product cost calculations. This target is close to the allowed
range in accuracy of a class two estimate, which is used for bid /tender controls according
the definition of the Advancement of Cost Engineering (AACE, 2005, 2).

Model-forming and validation within this paper can be described as an iterative or
stepwise process, which included as well data cleansing/removal of outliers in
combination with the check of crucial theoretical requirements of regression analysis.
Academic literature is pointing out following seven classical requirements, which must be
fulfilled, so that regression analysis gurantees statistically unbiased and efficient
predictions (Frost, 2019,221-231).

1 Linearity

This assumption is referring to the linearity of the regression model, so that an
independent variable y can be expressed and predicted by a linear combination of
independent variables x;, the constant a and it’s coefficients b; (Thomas/Thomas, 2017,
2016). A correctly specified regression function must therefore fulfill the requirement to
model the statistical relationships and effects between the variables (x;;y) in a linear
manner, so that the investigated subject is specified appropriately (Frost, 2019, 221-223).

2 The error term has a population mean of zero

This assumption is basically focussing on the unpredictability or randomness of the error
term, which forces the average value of residuals to equal zero. In this case the model is
not biased, which means that it is not sytematically under- or overestimating the observed
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values. Whenever a costant a is added to the model this requirement is automatically
fulfilled, since it is ensured, that the mean of residuals are equal to zero (Frost, 2019, 224).
Due to the reason that all to be determined regression equations will include a constant
a, there is no need to check this assumption individually within the result section of this

paper.

3 No correlation among independent variables x; and the error term u;

In case that correlation between an independent variable and the error term would exist,
this assumption would be violated. The eror term would not be a randomly derived
unpredictable term and the estimate of the coefficients (a, b;) would be biased.

In order to verify this assumption scatter plots with residuals u; on the one and the values
of the independent variables x; on the other axis can be used, while the aim is to
determine a randomly destributed pattern arround the value of zero (Frost, 2019, 224-
225).

4 No autocorrelation within the error term

This assumption is stating, that the observations of the error term don’t have to correlated
with each other, which means, that a single observation should not enable to predict the
following observation within time series (e.g. GDP or inflation data). An appropriate
method to reject potential autocorrelation is to graph the residuals in sequence and to
identify randomness within the scatterplot. Whenever a cyclical pattern is recognized
instead of randomness the assumption of autocorrellation is hurt, while adding further
independent variables to the model may remove the effect (Frost, 2019,226).

Due to the reason that the regression analysis and underlying data is not referring to time
series, the analysis of this pre requirement will not be part of the to be checked regression
diagnostics within the results section of this paper.

5 No heteroscedasticity within the error term
No heteroscedasticity can be observed, whenever there is a constant variance within the

error term for all observations u;. A simple way to check this assumption is to create a
scatterplot with residual values u; on the one axis and fitted or predicted values y; on the
other axis. Existing heteroscedasticity would be recognized through the increase of
residuals in a cone shape within one direction of the x-axis (Frost, 2019, 227-229).

6 No Multicolinearity between independent variables x;

The term multicolinearity is used in case that the independent variables x; are correlated
with each other. This is a problem, since the key goal of applying regression analysis is to
determine the individual contribution of each model forming variable, in order to predict
the dependent variabley. In this case the coefficients b; are representing the mean change
in y for each incremental change in a single independent variable x;, while holding all
remaining factors constant. Hence the verification of no or only minor effects of
colinearity among the independent variables x; is crucial for the quality of the overall
model. Multicolinearity can decrease the precision of estimated regression coefficients b;,
which impacts again the statistical power of the regression function. In such cases low p-
values do not necessarily guarantee, that the selected independent variables are
statistically significant, which means, that an accurate and causal attribution of the
variables x; on the explained variable y is not guaranteed.

Allthough this might not affect the overall precision of the total predicted values or the
goodness to fit statistics (Frost, 2019, 241-245), the understanding of independent effects
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may be important to explain the calculated results and to conduct fact based negotiations.
In order to identify multi-colinearity and it’s strenght the calculation of variation inflation
factors (VIFs) is a suitable method. In this regard a VIF of 1 indicates non existing
multicolinearity. However there is no consensus within academic literature on a
threshold of VIF values causing problems related to multi-colinearity. While a rule of
thump is indicating that VIF values greater than 10 are problematic, some authors set a
threshold value of 5 or even 4 (Daniels/Minot, 2020, 235; Frost, 2019, 245-246).

As will be highlighted within the result section of this paper, it will be possible to form
accurate and significant regression functions based on one single independent variable.
Hence there will be no need to analyse this pre requirement.

7 Normally destributed of residuals

In order to achieve unbiased total estimated values with a high accuracy and a minimum
of variance, the fulfillment of this assumption is often described as optional. The
advantage of normally distributed error terms is the possibility to conduct statistical
hypothesis testing, which allows to determine the statistical significance of each single
independent variable within the overall model. Normally distributed residuals are
enabeling the creation of reliable predictions of the constant a, the coefficients b; and
their underlying confidence intervalls. A simple way to check this requirement is the
generation of a normal prohability plot, while normal distributed residuals can be
assumed, in case that they are following a straight line (Frost, 2019,229-231). Next to this
graphical approach two statistical tests -,Shapiro Wilk” and ,d” Agostino-Pearson”
were performed, in order to check the normality assumption of the residuals. The
,Shapiro-Wilk-test” determines weather the null hypothesis, which is stating, that a
data-sample is normaly distributed has to be rejected or may be retained. The null
hypothesis of normality is rejected and the the outcome of the test is stating that the
sample records are not normally distributed, whenever the significance probability p of
the underlying test statistic is below or equal the significance level of a=0.05. Conversly
the failure of rejection is suggesting that the sample is normally destributed
(Martin/Bridgmon, 2012, 114). The ,,d’Agostino-Pearson test” instead checks normality
by determining individuall skewness and kurtosis of the to be determined sample and is
afterwards testing a joint null hypothesis referring to normality of skewness and kurtosis
of the underlying dataset (Daniels/Minot, 2020, 247). Whenever the significance level of
the corresponding test statisic p is <a=0.05 the null hypothesis is rejected, so that the
normality assumption is fulfilled in case that the significance level p is >a=0.05 (Zaionts,
2021).

3. Results

This Chapter presents the creation of regression equations, the analysis of regression
requirements and their validation in terms of achieved accuracy.

Regression Analysis -Warehouses/basic factory units-Complete Europe

Within a first step regression analysis was performed based on the complete European
Dataset including country records of the United Kingdom and Ireland, while
X4: general construction labor rate [EUR/hour] was considered as single independent
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variable. Although all p-values were significantly below 0.05 the investigation was
leading only to a R? value of 0.58. Hence it was tried to identify a potential second
independent variable. After several failures a second independent variable x,:cost for
1000 concrete blocks (400x200mm; >10,000 block job) [EUR] was identified, that was
leading to p-values below 0.05, while a R*-value of 0.76 could be identified. Within a next
step the regression requirements were checked. First of all the linearity of the model was
analysed by a scatter plot, in order to investigate the correlation between observed and
predicted values, as well as the correlation between the independent variables and the
observed values (See Fig. 1-3).
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Figure 3: costs of concrete blocks against observed construction costs warehouses/basic factory units
Europe

This investigation has resulted in three crucial findings:

First: The country record for Switzerland /Zurich was identified as an outlier (marked in
black) in all three scatterplots. Second: Only a very low correlation between the cost of
concrete blocks x, and the construction costs of warehouses/basic factory units could be
identified. Third: A second review on the scatterplot indicated, that it makes sense to split
the dataset into one which refers to Continental Europe (grey data points) and another
one, which is reflecting all records of the United Kingdom and Ireland (grey data points
within the circle). Based on these findings it has been decided, to split the dataset in two
independent subsets and to conduct regression analysis a second time by considering
construction labor rate as single independent variable and to remove the outlier
Zurich/Switzerland from the model forming dataset.

Regression Analysis -Warehouses/basic factory units-Continental Europe:

The second regression analysis, which was considering 12 data points (see Tab. 1), has
lead to a R%-value of 0.88, which means that only 12% of the variation of the model could
not to be explained by the model forming variable. The p-values for the intercept a and
the coefficient b; were both close to zero and significantly below 0.05, which is indicating
a low probability, that the values for the coefficients a, b; were caused randomly, without
any existing statistical causation.

Based on this initial analysis regression requirements were checked:

The linearity assumption was checked by analysing two scatter diagrams. The first is
plotting observed against predicted construction costs for basic factory untis/
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warehouses (Fig. 4). The second diagram instead is plotting construction labor rate
against the observed construction costs within this building category (see Fig. 5).

Figure 4: observed against predicted construction costs for warehouses/basic factory units Continental
Europe
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Figure 5: construction labor rate against observed construction costs warehouses/basic factory units
Europe

The analysis of both scatter diagrams was leading to the conclusion that the linearity
assumption was fulfilled.

This assumption of non existing correlations among independent variables x; and
the error term u; was checked by analysing a scatter diagram, which plotted the
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independent variable x,(constuction labor rate of a general laborer) against the
residual values (see Fig 6).
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The associated scatter-diagram was showing no significant correlation, so that it can be
concluded, that this assumption was fulfilled as well.
The requirement of heteroscedasticity within the error term was analysed based on
the scatter diagramm in Fig. 6. By reviewing the scatterplot it can be also concluded, that
there is no heteroscedasticity within the sample of residuals, since there is a constant
scattering arround the mean value of zero.
The assumption of normality was analysed by reviewing a scatterplot which compares
z-values with the values of the studentized residuals. In addition to that a Shapiro Wilk
and a d"Agostino-Peason test was taken in consideration.
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Since the studentized residuals are following a straight line, the scatter plot is indicating
anormal distribution of the error term. This indication is as well confirmed by the results
of the d"Agostino-Pearson test (p=0.21 > a=0.05), while the Shapiro Wilk Test (p=0.016
< a=0.05) failed to support the assumption of normality. Based on the graphical results
and the support of at least one of both statistical tests, it can be concluded that the
normality assumption is fulfilled. Based on the previous investigations it may be
concluded that all crucial regression requirements were fulfilled. In addition to that a
MAPE-value of 11.77% could be achieved by applying previously explained leave one out
technique, which is indicating a very good accuracy of the cost estimation function.
Further interpretation of the regression function can be given by reviewing equation no.
3:

y = 258.16 + 14.71x;  (3)

In this context y-hat is indicating the estimated value of construction cost [EUR/m?] for
warehouses/basic factory units in Continental Europe, while x; is refering to a
construction labor rate [EUR/hour] of a general constuction laborer. The value of the
constant a=258.16 EUR can be considered as the theoretical minimum of construction
cost to be spent per m? for warehouses and basic factory units. The increase in
construction cost per m? based on the change in cost of the independent parameter x; is
impacted by additional 44.5 EUR/m? for an increase of 1 EUR within the labor hourly rate.
Finally it can be summerized, that the regression equation is based on a very good fit of
data (R?=0.88), that the underlying formula is based on real statistical relations (p-values
<<0.05), while the accuracy of the cost estimation formula can be rated as high
(MAPE=11.77%). Since the regression function was meeting the targeted objectives, it
was decided not to check for further potential independent variables, but to stop the
investigation, in order to avoid an increase in model’s complexity.

Regression Analysis -Warehouses/basic factory units-UK and Ireland

The regression analysis which was conducted on the European sub-dataset contained
originally 7 data points (see Tab. 2). The original analyis which was considering x4
(construction labor rate) as single independent variable, has lead to a medium R?-value
of 0.51 while the p-values were not significant (py=0.269; p1=0.068). Based on that
imperfect result two scatterplots were analysed, in order to identify potential outliers.



SCENTIA International Economic Review 110

400

200

predicted const

0 200 400 600 800 1000 1200
observed construction costs [EUR/m?]

Figure 8: observed against predicted construction costs warehouses/basic factory units - UK and Ireland

By reviewing Fig. 8 and Fig. 9 it was possible to identify the record United
Kingdom/Norhern Ireland (marked in black) as an outlier, that is potentially distorting
the quality of the regression function.
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Figure 9: cconstruction labor rate against observed construction costs warehouses/basic factory units -
UK and Ireland

Based on that finding it had been decided to conduct a second regression analysis based
on 6 data points (see Tab. 2) and to remove Northern Ireland from the model forming
dataset. The second regression analysis has lead to a high R?-value of 0.74. The p-value
for the intercept a was 0.23, while coefficient b; was significant by reaching a value of
0.03. This is indicating at least for the varable x; ,that the coefficient b; was estimated
based on a real existing statistical relationship.
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Within a next step crucial requirements for regression analysis are analysed in
detail:

In order to check the linearity assumption two scatter diagramms were analysed. The
first was comparing observed with predicted values of construction cost for
warehouses/basic factory units. The second one was plotting the construction labor rate
against the observed value of construction costs (see Fig. 10-11).
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Figure 10: oobserved against predicted construction costs - warehouses/basic factory units - UK and
Ireland

The review of both diagramms indicate, that the linearity assumption of the regression
model is fullfilled. Both diagramms show a clear linear relationship.
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Figure 11: construction labor rate against construction costs - warehouses/basic factory units - UK and
Ireland
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The assumption of non existing correlation among among independent variables x;
and the error term u; was checked by analysing a scatter diagram, while the
independent variable x;(constuction labor rate of a general laborer) was plotted
against the residual values (see Fig. 12).

Figure 12: construction labor rate against residual values - warehouses/basic factory units - UK and
Ireland

Since the scatter plot is indicating no significant correlation, it can be stated that this
assumption is fullfilled.

The assumption of non existing heteroscedasticity within the error term was
analysed based on the scatter diagramm of Fig. 12. Based on the graphical analysis it can
be concluded, that there is no heteroscedasticity, since there is a constant scattering of
the residuals arround the value of zero, while no bottle neck/funnel-like pattern of
residuals can be observed by moving along the x-axis.

The assumption of normal destributed residuals was analysed with a scatterplot,
which compares z-values with the values of the studentized residuals (see Fig. 13).
In addition to that a Shapiro Wilk and d’Agostino-Peason test was performed.
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Figure 13: z-values against studentized residuals - warehouses/basic factory units - UK and Ireland

Since the studentized residuals are following a straight line the scatter plot is indicating a
normal distribution of the error term. This indication is as well supported by the results
of a Shapiro Wilk Test (p=0,057 > a=0.05). Due to the limited amount of data it was not
possible to conduct a d” Agostino-Pearson test. Based on the graphical results and the
result of the Shapiro Wilk test it can be concluded, that the residuals are normally
distributed. All previous investigations indicate that all crucial regression requirements
were met. In addition to that the accuracy of the cost estimation function was evaluated
by a calculated MAPE-value of 7.45%, which was indicating a very good accuracy of the
created cost estimation function. Futher interpretations can be given based on equation
no. 4:

y = —663.44+ 61.71x; (4)

In this context y-hat is indicating the estimated value of construction cost [EUR/m?] for
warehouses/basic factory units within the UK and Ireland, while x4 is refering to a
construction labor rate [EUR/hour]| of a general constuction laborer. The constant a
=—664.44 EUR can be considered as the theoretical minimum of construction cost to be
spent per m? for warehouses and basic factory units. The increase in construction cost per
m? based on the change in cost of the independent parameter X, is impacted by additional
61.71 EUR/m? for an increase of 1 EUR within the labor hourly rate. Finally it can be
concluded, that the regression equation is based on a good fit of data due to R*=0.74. Even
though the p-value of the constant a is in contrary to the coefficient b; not significant the
cost estimation function is able to provide a high quality in cost prediction, which was
verified by a MAPE-value of 7.45%. Hence it can be stated that regression function is fully
suitable to predict construction costs for warehouses and basic factory units depending
on their location. This argumentation is supported with a growing consensus in academic
literature, that reseachers should not focus on reaching low p-values below 0.05 stand
alone, but also recognize the importance of the size of confidence intervalls, in which the
values (a; b;) might fall (Daniels/Minot, 2020, 201). Since the regression function is
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meeting the requirements to achieve the objective of this paper, it was not checked
weather additional potential independent variables could be considered. Instead of that,
it has been decided to keep the complexity of the model at a reasonable level.

Regression Analysis -high factory units - complete Europe

The regression analysis focussing on high tech factories was performed on the complete
European Dataset by considering again the construction labor rate x; as single
independent variable. Already in the first step the datapoint Switzerland/Zurich was
removed as an outlier, due ot the extremely high construction labor rate compared to the
other records. By taking all remaining 19 data points in account (see Tab. 3) a medium
correlation with R?= 0.65 was identified. In addition to that, the p-values for the intercept
a and the coeffiecient b, reached significant values close to zero. In order to improve the
quality of the model a scatter plot was analysed, which compared the construction labor
rate x; with the observed values y (see Fig. 14).
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Figure 14: construction labor rate against residual values - warehouses /basic factory units - Europe

Through graphical analysis the record Stockholm/Sweden (marked in black) was
identified as outlier and removed from the dataset. Another finding from this
investigation was, that a split of the dataset in two independent samples was not suitable
to improve the quality of the model intensively, so that it was decided to form one
regression function for complete Europe. By removing the Swedish outlier from the
dataset and performing the regression analysis a second time the R?-value could be
improved to 0.85 while the p-values for a and b; remained significant with values close
to zero. Based on these results which were indicating a very good fit of the regression
function and a good quality of the model in terms of p-values <<0.05 the regression
requirements were checked in detail within a next step:

The linearity assumption of the model was verified by two scatter plots. The first
diagram was comparing observed with predicted values of construction cost for high tech
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factories, while the second was plotting the construction labor rate against the observed
value of construction costs within this building category (see Fig. 15-16).
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Figure 15: observed against predicted construction costs - high tech factories - complete Europe

A strong correlation between observed and predicted construction cost for high tech
factories can be recognized in Fig. 15, while Fig. 16 is illustrating also a strong linear
correlation between the construction labor rate x4 and the observed values of y.
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Figure 16: construction labor rate against construction costs - high tech factories - complete Europe

The assumption of non existing correlation among independent variables x; and the
error term u; was verified by a scatter diagram by plotting the independent variable

x4 (constuction labor rate ) against the residual values (see Fig. 17). Since no correlation
could be identified, the assumption is fullfilled.
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Figure 17: construction labor rate against construction costs - high tech factories - complete Europe

The requirement of heteroscedasticity within the error term was checked based on
Fig. 17. The diagram is vizualising that the residuals are scattering relatively constantly
arround the x-axis, while no bottle neck/funnel shape pattern can be observed by moving
along the x-axis. This is an indicator for non existing heteroscedasticity.

The assumption of normally destributed residuals was analysed by using a scatter
diagram, which is plotting z values on the x-axis against the values of the studentized
residuals on the y-axis (see Fig. 18).
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Figure 18: z-values against studentized residuals - high tech factories - Europe

Since the studentized residuals are following a straight line the scatter plot is indicating a
normal distribution of the error term. This finding is also confirmed by the results of the
d’Agostino-Pearson test (p=0.706 > a=0.05) and the Shapiro Wilk test (p=0,092 >
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a=0.05). Based on the graphical analysis and the results of the statistical tests it can be
concluded, that the residuals are normally distributed. By applying the previously
explained leave one out technique a MAPE-value of 11.48% could be realized, which is
indicating a high accuracy in addition to the fullfillment of all regression requirements.

Futher interpretations can given by reviewing equation no. 5:
y = 534.68 + 56.16x; (5)

The variable y-hat is indicating the estimated value of construction cost [EUR/m?] for
high tech factories within Europe, while x; is refering to a construction labor rate
[EUR/hour] of a general constuction laborer. The value of the constant a =534.68 EUR can
be interpreted as the theoretical minimum of construction cost spending, which is
achieved in case of x;= 0. The increase in construction cost per m? based on a one EUR
change in construction labor rate x4 is 56.16 EUR/m?. Finally it can be summerized that
the regression equation is based on a very good fit of data (R?=0.85). In addition to that
the underlying formula is based on significant statistical relations which are expressed by
the identified coefficients a and b4, since their p-values are close to zero and far below
a=0.05. Also the accuracy of the cost estimation function can be rated as very high, due to
a calculated MAPE value of 11,48%. Thus there was no need to add further additional
independent variables in order to improve the quality of the model.

Tab. 4 is finally summerizing the results of this paper. The R? values of the regression
functions were within a range between 0.74 up to 0.88 while MAPE values between
7.45% up to 11.77% were achieved.

Table 4: Summary of results - regression analysis

Region Category Regression Equation — all values in | Quality independent variables
EUR

Continental | Warehouses/ § = 25816+ 14.71x, R>=0.88 .. fructi ¢ EUR

Europe Basic factory units po=0.00017265 §: construction cost m?2 1
p1=5.998*10°(-6) X;: construction labor rate
MAPE=11.77% general laborer [%]

United Warehouses/ y = —663.44 + 61.71x, R2=0.74 . fructi ¢ EUR

Kingdom basic factory units po=10.23 §- construction cost [ m?2 ]

and Ireland p1=0.029 X, : construction labor rate
MAPE=7.45% general laborer [%

Europe High-tech factories y = 534.68 + 56.16x, R2=0.85 N . EUR
0,=0.002 ¥: construction cost [F]

,=0.

p1=6.6285*107(-8) X;: construction labor rate
MAPE=11.48% general laborer [%]

While the next chapter “Discussion” is finally discussing the results of regression analysis
the chapter “Conclusion” focusses on potential future research.

4. Discussion

By comparing the results of regression analysis, it can be confirmed, that the determined
regression equations achieve a good quality in terms of cost prediction. Since only one
independent variable was needed in order to form the cost estimation functions,
calculations can be conducted fast, without major time efforts and without deeper
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construction cost knowledge. A big advantage in this context is, that national and region-
specific construction labor rates are regularly published by national or European
statistical institutions (e.g., www.destatis.de; ec.europa.eu). Another advantage is, that
labor rates are not fluctuating strongly compared to other cost factors such as standard
construction materials based on concrete or steel. The cost estimation functions can be
considered to be stable for several years, since the impact of inflation is considered within
the yearly increase of labor costs.

Although all the three regression equations show a good to very good data fit in terms of
regression analysis (0.78<R*<0.88) some limitations of the study are worth to mention. A
certain level of variability in the data (12%<Var<22%) could not be explained by the
regression models. This variability can change over time. It can be stated that a certain
level of variation in construction costs is driven by effects, that are not covered by changes
in construction labor rates. One of these effects could be based on tendentially higher
construction costs in overheating markets whenever contractors are able to enforce
higher profit margins (Turner and Townsend, 2019, 20). Another limitation of the study
is based on the relevance of the model forming parameters. In case of rapid changes in
construction technology and/or building requirements, the original regression functions
might not be appropriate anymore. In case of substitution of construction labor due to
higher automatization in building construction within the future, it might be necessary to
take a completely new model forming dataset and more than one model forming variable
in consideration.

5. Conclusion

Finally, it can be stated, that the developed cost estimation formulae are fully suited to
determine construction cost per m? for different plant building categories and locations.

However, each supplier plant covers next to industrial also office floor spaces, whereat
building requirements and hence construction costs are different. Hence future research
could extent the results of this paper and create cost estimation functions, that are suited
to calculate construction costs of office areas/buildings within a plant. Commercial
building categories and underlying datasets within the study from Turner and Townsend
(2019) may be unitized. Additionally, cost estimation functions could be created, that are
focussing on regions outside Europe. Since building requirements and market conditions
and therewith construction costs for different building categories are varying globally
additional regression functions could be formed based on North American and Asian
datasets. Finally, it needs to be mentioned that the developed cost estimation functions
have to be integrated within a bigger cost model, which converts construction costs into
annual cost for depreciation per m? This spending needs to be summed up to with
additional cost elements such as insurance, maintanance, energy consumption and others,
in order to result in a fully accounted annual industrial rent per m?. These industrial rents
could be then finally used to improve cost engineers Should Cost Calculations.

Within a next step industrial rents could be either used as direct input within the
calculation of machine houlry rates or recognized as a cost element within a complexer
plant cost models. Such a model could finally aim to determine supplier’s material or
manufacturing overheads (Rossi, 2021).
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